119 research outputs found

    Simulating the deep decarbonisation of residential heating for limiting global warming to 1.5C

    Get PDF
    Whole-economy scenarios for limiting global warming to 1.5C suggest that direct carbon emissions in the buildings sector should decrease to almost zero by 2050, but leave unanswered the question how this could be achieved by real-world policies. We take a modelling-based approach for simulating which policy measures could induce an almost-complete decarbonisation of residential heating, the by far largest source of direct emissions in residential buildings. Under which assumptions is it possible, and how long would it take? Policy effectiveness highly depends on behavioural decision- making by households, especially in a context of deep decarbonisation and rapid transformation. We therefore use the non-equilibrium bottom-up model FTT:Heat to simulate policies for a transition towards low-carbon heating in a context of inertia and bounded rationality, focusing on the uptake of heating technologies. Results indicate that the near-zero decarbonisation is achievable by 2050, but requires substantial policy efforts. Policy mixes are projected to be more effective and robust for driving the market of efficient low-carbon technologies, compared to the reliance on a carbon tax as the only policy instrument. In combination with subsidies for renewables, near-complete decarbonisation could be achieved with a residential carbon tax of 50-200Euro/tCO2. The policy-induced technology transition would increase average heating costs faced by households initially, but could also lead to cost reductions in most world regions in the medium term. Model projections illustrate the uncertainty that is attached to household behaviour for prematurely replacing heating systems

    The impact of land-use change emissions on the potential of bioenergy as climate change mitigation option for a Brazilian low-carbon energy system

    Get PDF
    Land-use change (LUC)-related greenhouse gas (GHG) emissions determine largely whether bioenergy is a suitable option for climate change mitigation. This study assesses how LUC emissions influence demand for bioenergy to mitigate GHG emissions, and how this affects the energy mix, using Brazil as a case study. A methodological framework is applied linking bioenergy supply curves, with associated costs and spatially explicit LUC emissions, to a bottom-up energy system model. Furthermore, the influence of four key determining parameters is assessed: agricultural productivity, time horizon, natural succession (NS), and the use of dynamic emission factors (EFs). Demand for new bioenergy plantations range from 0.5 to 6.7 EJ in 2050, and is avoided when its EF reaches above 15 kg CO2/GJbiomass. Dynamic EFs result in earlier and larger use of bioenergy. Static EFs attenuate all emissions evenly over time, resulting in relative high emissions around 2050 when the carbon budget is most stringent. This in contrast to dynamic EFs, having early high peaks because of clearance of natural vegetation, but relatively small long-term emissions when the carbon budget is most stringent. Exclusion of NS, in combination with spared agricultural land, results in a demand of 6.7 EJ, because of its low carbon penalty. Assuming that land is spared due to continuous yield increase (which is the reason to include NS as and EF component), bypasses the fact that yield improvements (that make those lands available) take place because of demand for bioenergy. When low-carbon biomass is in limited availability, increasing electrification is observed, leading to electric capacity increase of 62% (mainly wind and solar energy), and a 12% energy system costs increase. Inclusion of spatiotemporal explicit supply potential and LUC emissions leads to improved bioenergy deployment pathways that come closer to the real situation as the dynamic nature of LUC emissions is included

    Modeling the Effects of Future Growing Demand for Charcoal in the Tropics

    Get PDF
    Global demand for charcoal is increasing mainly due to urban population in developing countries. More than half the global population now lives in cities, and urban-dwellers are restricted to charcoal use because of easiness of production, access, transport, and tradition. Increasing demand for charcoal, however, may lead to increasing impacts on forests, food, and water resources, and may even create additional pressures on the climate system. Here we assess how different charcoal scenarios based on the Shared Socio-economic Pathways (SSP) relate to potential biomass supply. For this, we use the energy model TIMER to project the demand for fuelwood and charcoal for different socio-economic pathways for urban and rural populations, globally, and for four tropical regions (Central America, South America, Africa and Indonesia). Second, we assess whether the biomass demands for each scenario can be met with current and projected forest biomass estimated with remote sensing and modeled Net Primary Productivity (NPP) using a Dynamic Global Vegetation Model (LPJ-GUESS). Currently one third of residential energy use is based on traditional bioenergy, including charcoal. Globally, biomass needs by urban households by 2100 under the most sustainable scenario, SSP1, are of 14.4 mi ton biomass for charcoal plus 17.1 mi ton biomass for fuelwood (31.5 mi ton biomass in total). Under SSP3, the least sustainable scenario, we project a need of 205 mi tons biomass for charcoal plus 243.8 mi ton biomass for fuelwood by 2100 (total of 450 mi ton biomass). Africa and South America contribute the most for this biomass demand, however, all areas are able to meet the demand. We find that the future of the charcoal sector is not dire. Charcoal represents a small fraction of the energy requirements, but its biomass demands are disproportionate and in some regions require a large fraction of forest. This could be because of large growing populations moving to urban areas, conversion rates, production inefficiencies, and regions that despite available alternative energy sources still use a substantial amount of charcoal. We present a framework that combines Integrated Assessment Models and local conditions to assess whether a sustainable sector can be achieved

    Study Report on Reporting Requirements on Biofuels and Bioliquids stemming from the Directive (EU) 2015/1513

    Get PDF
    This report was commissioned to gather comprehensive information on, and to provide systematic analysis of the latest available scientific research and the latest available scientific evidence on indirect land use change (ILUC) greenhouse gas emissions associated with production of biofuels and bioliquids. The EU mandatory sustainability criteria for biofuels and bioliquids do not allow the raw material for biofuel production to be obtained from land with high carbon stock or high biodiversity value. However, this does not guarantee that as a consequence of biofuels production such land is not used for production of raw materials for other purposes. If land for biofuels is taken from cropland formerly used for other purposes, or by conversion of grassland in arable land for biofuel production, the former agricultural production on this land has to be grown somewhere else. And if there is no regulation that this must happen sustainably, conversion of land may happen, which is not allowed to be used under the EU sustainability criteria for biofuels. This conversion may take place in other countries than where the biofuel is produced. This is called indirect land use change (ILUC). According to Article 3 of the European Union’s Directive (EU) 2015/1513 of 9 September 2015, the European Commission has to provide information on, and analysis of the available and the best available scientific research results, scientific evidence regarding ILUC emissions associated to the production of biofuels, and in relation to all production pathways. Besides, according to Article 23 of the revised European Union’s Directive 2009/28/EC (RES Directive), the Commission also has to provide the latest available information with regard to key assumptions influencing the results from modelling ILUC GHG emissions, as well as an assessment of whether the range of uncertainty identified in the analysis underlying the estimations of ILUC emissions can be narrowed down, and if the possible impact of the EU policies, such as environment, climate and agricultural policies, can be factored in. An assessment of a possibility of setting out criteria for the identification and certification of low ILUCrisk biofuels that are produced in accordance with the EU sustainability criteria is also required

    The implications of geopolitical, socioeconomic, and regulatory constraints on European bioenergy imports and associated greenhouse gas emissions to 2050

    Get PDF
    Modern sustainable bioenergy can contribute toward mid-century European energy decarbonization targets by replacing fossil fuels. Fulfilling this role would require access to increased volumes of bioenergy, with extra-EU imports projected to play an important part. Access to this resource on the international marketplace is not governed by Europe's economic competitiveness alone. This study investigates geopolitical, socioeconomic, and regulatory considerations that can influence Europe's bioenergy imports but that are so far underexplored. The effect of these constraints on European import volumes, sourcing regions, mitigation potential, and their implications for European and global emissions is projected to the year 2050 using a global integrated assessment model. The projections show that Europe can significantly increase imports from 1.5 EJ year−1 in 2020 to 8.1 EJ year−1 by 2050 whilst remaining compliant with Renewables Energy Directive recast II (RED II) greenhouse gas (GHG) criteria. Under these conditions, bioenergy could provide annual GHG mitigation of 0.44 GtCO2eq. in 2050. However, achieving this would require a structural diversification of trading partners from the present. Furthermore, socioeconomic and logistical concerns may limit the feasibility of some of the projected major sourcing regions, including Africa and South America. Failure to overcome these challenges within supplying regions could limit European imports by 60%, reducing annual mitigation to 0.16 GtCO2eq. in 2050. From a global perspective, regions with a comparatively carbon-intense energy system offer an alternative destination for globally traded biomass that could increase the mitigative potential of bioenergy

    A race to zero - Assessing the position of heavy industry in a global net-zero CO2 emissions context

    Get PDF
    In this study, we explore the decarbonisation pathways of four carbon and energy-intensive industries (respectively iron & steel, clinker & cement, chemicals and pulp & paper) in the context of a global 2050 net-zero carbon emissions objective using the IMAGE integrated assessment model. We systematically test the robustness of the model by studying its responses to four different decarbonisation narratives and across six different world regions. The study underpins earlier conclusions in the literature on ‘residual emissions’ and ‘hard-to-abate sectors’, such as the persistence of residual emissions and the overall continued use of fossil fuels by heavy industries within the global 2050 net-zero context (with the pulp & paper sector as an exception). However, under the condition that net-negative emissions are achieved in the power and energy conversion sectors prior to the 2050 landmark, the indirect emission removals can compensate for the residual emissions left in the industry sectors, rendering these sectors ‘net-zero’ as early as the 2040s. Full decarbonisation of industrial (sub)sector(s) is found to be possible, but only under very specific narratives and likely outside of the 2050 timeline for the iron & steel, clinker & cement and the chemical sector. Subsequently, we find that the decarbonisation patterns in IMAGE are industry and regionally specific, though, different strategic considerations (narratives) did not substantially change the models’ decarbonisation response before or after 2050. Important aspects of the decarbonisation responses are the (direct and indirect) electrification of the iron & steel sector, a full dependency on carbon removal technologies in the clinker & cement sector, the closing of carbon and material loops in the chemical sector and zero-carbon heating for the pulp & paper sector. However, further research and modelling efforts are needed to study a broader palette of conceivable decarbonisation pathways and implications for industry within a global 2050 net-zero economy context

    BLOEM: A spatially explicit model of bioenergy and carbon capture and storage, applied to Brazil

    Get PDF
    Bioenergy could play a major role in decarbonizing energy systems in the context of the Paris Agreement. Large-scale bioenergy deployment could be related to sustainability issues and requires major infrastructure investments. It, therefore, needs to be studied carefully. The Bioenergy and Land Optimization Spatially Explicit Model (BLOEM) presented here allows for assessing different bioenergy pathways while encompassing various dimensions that influence their optimal deployment. In this study, BLOEM was applied to the Brazilian context by coupling it with the Brazilian Land Use and Energy Systems (BLUES) model. This allowed investigating the most cost-effective ways of attending future bioenergy supply projections and studying the role of recovered degraded pasture lands in improving land availability in a sustainable and competitive manner. The results show optimizing for limiting deforestation and minimizing logistics costs results in different outcomes. It also indicates that recovering degraded pasture lands is attractive from both logistics and climate perspectives. The systemic approach of BLOEM provides spatial results, highlighting the trade-offs between crop allocation, land use and the logistics dynamics between production, conversion, and demand, providing valuable insights for regional and national climate policy design. This makes it a useful tool for mapping sustainable bioenergy value chain pathways

    Implications of climate change mitigation strategies on international bioenergy trade

    Get PDF
    Most climate change mitigation scenarios rely on increased use of bioenergy to decarbonize the energy system. Here we use results from the 33rd Energy Modeling Forum study (EMF-33) to investigate projected international bioenergy trade for different integrated assessment models across several climate change mitigation scenarios. Results show that in scenarios with no climate policy, international bioenergy trade is likely to increase over time, and becomes even more important when climate targets are set. More stringent climate targets, however, do not necessarily imply greater bioenergy trade compared to weaker targets, as final energy demand may be reduced. However, the scaling up of bioenergy trade happens sooner and at a faster rate with increasing climate target stringency. Across models, for a scenario likely to achieve a 2 °C target, 10–45 EJ/year out of a total global bioenergy consumption of 72–214 EJ/year are expected to be traded across nine world regions by 2050. While this projection is greater than the present trade volumes of coal or natural gas, it remains below the present trade of crude oil. This growth in bioenergy trade largely replaces the trade in fossil fuels (especially oil) which is projected to decrease significantly over the twenty-first century. As climate change mitigation scenarios often show diversified energy systems, in which numerous world regions can act as bioenergy suppliers, the projections do not necessarily lead to energy security concerns. Nonetheless, rapid growth in the trade of bioenergy is projected in strict climate mitigation scenarios, raising questions about infrastructure, logistics, financing options, and global standards for bioenergy production and trade. © 2020, The Author(s)

    Biomass residues as twenty-first century bioenergy feedstock—a comparison of eight integrated assessment models

    Get PDF
    In the twenty-first century, modern bioenergy could become one of the largest sources of energy, partially replacing fossil fuels and contributing to climate change mitigation. Agricultural and forestry biomass residues form an inexpensive bioenergy feedstock with low greenhouse gas (GHG) emissions, if harvested sustainably. We analysed quantities of biomass residues supplied for energy and their sensitivities in harmonised bioenergy demand scenarios across eight integrated assessment models (IAMs) and compared them with literature-estimated residue availability. IAM results vary substantially, at both global and regional scales, but suggest that residues could meet 7–50% of bioenergy demand towards 2050, and 2–30% towards 2100, in a scenario with 300 EJ/year of exogenous bioenergy demand towards 2100. When considering mean literature-estimated availability, residues could provide around 55 EJ/year by 2050. Inter-model differences primarily arise from model structure, assumptions, and the representation of agriculture and forestry. Despite these differences, drivers of residues supplied and underlying cost dynamics are largely similar across models. Higher bioenergy demand or biomass prices increase the quantity of residues supplied for energy, though their effects level off as residues become depleted. GHG emission pricing and land protection can increase the costs of using land for lignocellulosic bioenergy crop cultivation, which increases residue use at the expense of lignocellulosic bioenergy crops. In most IAMs and scenarios, supplied residues in 2050 are within literature-estimated residue availability, but outliers and sustainability concerns warrant further exploration. We conclude that residues can cost-competitively play an important role in the twenty-first century bioenergy supply, though uncertainties remain concerning (regional) forestry and agricultural production and resulting residue supply potentials. © 2019, The Author(s)

    Greenhouse gas emission curves for advanced biofuel supply chains

    Get PDF
    Most climate change mitigation scenarios that are consistent with the 1.5–2 °C target rely on a large-scale contribution from biomass, including advanced (second-generation) biofuels. However, land-based biofuel production has been associated with substantial land-use change emissions. Previous studies show a wide range of emission factors, often hiding the influence of spatial heterogeneity. Here we introduce a spatially explicit method for assessing the supply of advanced biofuels at different emission factors and present the results as emission curves. Dedicated crops grown on grasslands, savannahs and abandoned agricultural lands could provide 30 EJBiofuel yr−1 with emission factors less than 40 kg of CO2-equivalent (CO2e) emissions per GJBiofuel (for an 85-year time horizon). This increases to 100 EJBiofuel yr−1 for emission factors less than 60 kgCO2e GJBiofuel −1. While these results are uncertain and depend on model assumptions (including time horizon, spatial resolution, technology assumptions and so on), emission curves improve our understanding of the relationship between biofuel supply and its potential contribution to climate change mitigation while accounting for spatial heterogeneity
    • 

    corecore